Name Resveratrol
Appearance White powder with slight yellow cast
CAS No. 501-36-0
Formulae
Molecular Weight 228.24
Natural Resources
Bioactivities
Identification Melting point 253-255°C
Optical rotation [α]20D-18° to -22°
1HNMR
Analytical Method
INSTRUMENT Silica gel 60 plates
MOBILE PHASE n-​hexane: ​Et acetate: formic acid =20: 19: 1 (v/v)
DETECTION UV λ303 nm
INSTRUMENT Agilent 1200 series (Agilent Technologies, Germany) liquid chromatography coupled with a diode array detector (DAD G1315D), a model G1322A degasser, G1311A quaternary gradient pump and G1316A autosampler.
COLUMN Column C18 (AichromBond 5 μm, 250 × 4.60 mm)
MOBILE PHASE A: acetonitrile, B: water containing 0.2% formic acid, 25: 75, 0.8 mL/min
DETECTION UV λ306 nm
INSTRUMENT Merck-Hitachi L-6200 pump (Merck-Hitachi, Darmstadt, Germany) and a diode array detector Shimadzu SPD-M6A UV (Shimadzu, Kyoto, Japan).
COLUMN Agilent Zorbax Bioseries GF-450 (Santa Clara, USA) (250 × 9.4 mm I.D. 6 μm particle size)
MOBILE PHASE After fabrication of the desired aqueous mobile phase (0.2 M sodium acetate was used as buffer for pH 4.0, 0.2 M sodium phosphate for pH 7.0-8.5 and 0.2 M sodium borate for pH 9.0-10.0), an accurately weighed amount of α-, β- or γ-CD was added to 250 mL of this binary mixture in a 500 mL volumetric flask. When total dissolution at ambient temperature was observed, the remaining amount of solvent was added to reach a final mobile phase of 500 mL. The maximum quantity of CD that can be dissolved in such binary mixtures has been reported elsewhere (Chatjigakis, Donzé, & Coleman, 1992). The concentrations of CD used were 0, 0.5, 1, 1.5 and 2 mM. 1.0 mL/min
DETECTION UV λ306 nm
INSTRUMENT API 3000 MS/MS system (Applied Biosystems/MDS Sciex, Foster City, CA, USA) equipped with an Agilent 1100 HPLC (Agilent Technologies, Wilmington, DE, USA) and run by Analyst™ 1.4.2 software.
COLUMN Luna 3 μm C18 (2) 100 Å 30 mm × 2.0 mm column (Phenomenex, Torrance, CA, USA).
MOBILE PHASE A: 5 mM ammonium acetate in water-isopropanol (98: 2, v/v), B: methanol-isopropanol (98: 2, v/v), A: B = 9: 1 0.5 min, A: B = 5: 95 5 min, 0.25 mL/min
DETECTION Negative ion mode, acquisition was performed in multiple reaction monitoring (MRM) mode, Ion spray voltage: −3000 V, collision energy: -30 V.
Sample Preparation
METHOD 1
Model GS10A2 multilayer coil planet centrifuge (Beijing Institute of New Technology Application, Beijing, China) equipped with a PTFE multilayer coil of 110 m × 1.6 mm I.D. with a total capacity of 230 ml.
EtOAc-EtOH-water (10: 1: 10, v/v) and then with the same solvent system at the modified volume ratio of 70: 1: 70.
2.0 mL/min, 80 rpm
UV λ254 nm
Reference
[1] Ji, M., Li, Q., Ji, H., & Lou, H. (2014). "Investigation of the distribution and season regularity of resveratrol in Vitis amurensis via HPLC-DAD-MS/MS." Food Chemistry, 142(0), 61-65. doi: http://dx.doi.org/10.1016/j.foodchem.2013.06.131
[2] López-Nicolás, J. M., & García-Carmona, F. (2008). "Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC." Food Chemistry, 109(4), 868-875. doi: http://dx.doi.org/10.1016/j.foodchem.2008.01.022
[3] Muzzio, M., Huang, Z., Hu, S.-C., Johnson, W. D., McCormick, D. L., & Kapetanovic, I. M. (2012). "Determination of resveratrol and its sulfate and glucuronide metabolites in plasma by LC-MS and their pharmacokinetics in dogs." Journal of Pharmaceutical and Biomedical Analysis, 59(0), 201-208. doi: http://dx.doi.org/10.1016/j.jpba.2011.10.023
[4] Feng, Y., Wang, X.-p., Yang, S.-g., Wang, Y.-j., Zhang, X., Du, X.-t., ... Liu, R.-t. (2009). "Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation." NeuroToxicology, 30(6), 986-995. doi: http://dx.doi.org/10.1016/j.neuro.2009.08.013
[5] Soylemez, S., Gurdal, H., Sepici, A., & Akar, F. (2008). "The effect of long-term resveratrol treatment on relaxation to estrogen in aortae from male and female rats: Role of nitric oxide and superoxide." Vascular Pharmacology, 49(2-3), 97-105. doi: http://dx.doi.org/10.1016/j.vph.2008.06.006
[6] Belguendouz, L., Fremont, L., & Linard, A. (1997). "Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins." Biochemical Pharmacology, 53(9), 1347-1355. doi: http://dx.doi.org/10.1016/S0006-2952(96)00820-9
[7] Notas, G., Nifli, A.-P., Kampa, M., Vercauteren, J., Kouroumalis, E., & Castanas, E. (2006). "Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation." Biochimica et Biophysica Acta (BBA) - General Subjects, 1760(11), 1657-1666. doi: http://dx.doi.org/10.1016/j.bbagen.2006.09.010
[8] Wong, D. H., Villanueva, J. A., Cress, A. B., Sokalska, A., Ortega, I., & Duleba, A. J. (2011). "Resveratrol inhibits the mevalonate pathway and potentiates the antiproliferative effects of simvastatin in rat theca-interstitial cells." Fertility and Sterility, 96(5), 1252-1258. doi: http://dx.doi.org/10.1016/j.fertnstert.2011.08.010
[9] Chen, L., Han, Y., Yang, F., & Zhang, T. (2001). "High-speed counter-current chromatography separation and purification of resveratrol and piceid from Polygonum cuspidatum." Journal of Chromatography A, 907(1-2), 343-346. doi: http://dx.doi.org/10.1016/S0021-9673(00)00960-2
[10] Chen, H., Tuck, T., Ji, X., Zhou, X., Kelly, G., Cuerrier, A., & Zhang, J. (2013). "Quality Assessment of Japanese Knotweed (Fallopia japonica) Grown on Prince Edward Island as a Source of Resveratrol." J. Agric. Food Chem., 61(26), 6383-6392. doi: 10.1021/jf4019239
[11] Glavnik, V., Simonovska, B., Albreht, A., & Vovk, I. (2012). "TLC and HPLC screening of p-coumaric acid, trans-resveratrol, and pterostilbene in bacterial cultures, food supplements, and wine." J. Planar Chromatogr.--Mod. TLC, 25(3), 251-258. doi: 10.1556/JPC.25.2012.3.11

Permanent URL: https://sys01.lib.hkbu.edu.hk/cmed/pid/detail.php?code=P00041