化学名称 叶绿醇
外观 无色油状物
化学物质登录号 150-86-7
分子式
分子量 296.535
植物来源
生物活性
鉴定
1HNMR
13CNMR
分析方法
仪器 Perkin-Elmer GC Clarus 500 系统和气相色谱-质谱联用 (GC-MS)
色谱柱 Elite-I, 硅胶熔融毛细管色谱柱 (30 mm x 0.25 mm 1 D x 1μMdf, 100% 二甲基聚硅氧烷), 氦气为载气, 流速1 mL/min, 进样量2μL (分离比例10 : 1)
流动相 柱温 110°C (等温 2 min), 增加 10°C/min, 至 200°C, 5°C/min 至 280°C, 280°C 9 min
检测器 离子化电压 70 eV. 进样温度 250°C ; 离子源温度 280°C
仪器 GC clarus 500 Perkin Elmer 系统包括AOC- 20i 自动进样器和气相色谱-质谱联用 (GC-MS)
色谱柱 Elite-1 硅胶熔融毛细管色谱柱 (330 mm x 0.25 mm ID x 1 μm df), 100% 二甲基聚硅氧烷, 氦气 (99.999%) 为载气, 流速 1 mL/min, 进样量0.5 μl (分离比例10: 1)
流动相 柱温110°C 增加至 10°C /min, 再至 200°C, 5°C /min 280°C, 280°C 9 min
检测器 进样温度 250°C; 离子源温度 280°C.
仪器 GC CLARUS 500 PerkinElmer 系统包括气相色谱-质谱联用 (GC-MS)
色谱柱 Elite-1 硅胶熔融毛细管色谱柱 (30 × 0.25 mm ID × 1EM df, 100% 二甲基聚硅氧烷), 离子碰撞模式 70 eV; 氦气 (99.999%) 为载气, 流速 1mL/min 进样量 0.5 EI.
流动相 柱温 110°C (等温 2 min), 增加至 10°C/min, 至 200°C, 5°C/min 280°C, 280°C 9 min.
检测器 质谱70 eV; 扫描间隔0.5 s, 碎片40 550 Da.
样品制备
方法一
样品皂化并碱化. 1.5 mol/L KOH 乙醇 MAE 提取. 2.0 g 样品, 3500 rpm 离心 5 min, 上清液以正己烷重提取 3 次. 蒸干有机相利用 HPLC 分析.
J型仪器 (GS10A; Beijing UE Biotech., China)配备110 m多层线圈 (1.6 mm I.D.)总容量240 mL 使用HSCCC.
己烷: 乙腈: 甲醇 = 5: 5: 3, v/v/v
2.0 mL/min; 800 rpm
UV λ210 nm
参考文献
[1] Xu, K., et al. (2013). "GC-MS analysis on chemical constituents of volatile oils in different fractions of Isodon amethystoides." Zhonghua Zhongyiyao Xuekan 31(8): 1797-1799.
[2] Wang, Q., et al. (2013). "GC-MS analysis of the low-polarity chemical constituents from Parochetus communis Buch." Med. Plant 4(9): 50-51, 55.
[3] Tang, B.-q., et al. (2013). "Chemical constituents in leaves of Morus atropurpurea and their α-glucosidase activity." Zhongcaoyao 44(22): 3109-3113.
[4] El-Domiaty, M. M., et al. (2013). "Phytochemical and biological investigation of Lagenaria siceraria (Molina) Standl. cultivated in Egypt." Biosci., Biotechnol. Res. Asia 10(2): 533-550.
[5] Zhong, R. M., et al. (2013). "Antimicrobial activity of Myrica rubra essential oil against five pathogenic food-borne bacteria." Adv. Mater. Res. (Durnten-Zurich, Switz.) 781-784(Advances in Chemical Engineering III): 1646-1651, 1647pp.
[6] Sharma, R., et al. (2014). "The potential of Leucosidea sericea against Propionibacterium acnes." Phytochem. Lett. 7: 124-129.
[7] Feng, C., et al. (2008). "Chemical constituents of medicinal mangrove plant Hibiscus tiliaceus." Haiyang Kexue 32(9): 57-60.
[8] Yang, H.-k., et al. (2013). "An analysis on the constituents of the volatile oil from different parts of Ardisia mamillata." Jiangxi Nongye Daxue Xuebao 35(5): 993-998.
[9] Wei, H., et al. (2013). "Chemical constituents in leaves of Cyclosorus parasiticus." Zhongcaoyao 44(17): 2354-2357.
[10] Costa, J. P., et al. (2014). "Anxiolytic-like effects of phytol: Possible involvement of GABAergic transmission." Brain Res. 1547: 34-42.
[11] Costa, J. P., et al. (2012). "Anticonvulsant effect of phytol in a pilocarpine model in mice." Neurosci. Lett. 523(2): 115-118.
[12] Saikia, D., et al. (2010). "Antitubercular potential of some semisynthetic analogues of phytol." Bioorg. Med. Chem. Lett. 20(2): 508-512.
[13] Goto, T., et al. (2005). "Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes." Biochemical and Biophysical Research Communications 337(2): 440-445.
[14] Jegadeeswari, P., et al. (2012). "GC-MS analysis of bioactive components of Aristolochia krysagathra (Aristolochiaceae)." J. Curr. Chem. Pharm. Sci. 2(4): 226-232.
[15] Kulandai Therese, N., et al. (2012). "GC-MS analysis of bioactive constituents of Hedyotis leschenaultiana DC (Rubiaceae)." Int. J. Appl. Biol. Pharm. Technol. 3(4): 159-164.
[16] Paranthaman, R., et al. (2012). "GC-MS analysis of phytochemicals and simultaneous determination of flavonoids in Amaranthus caudatus (Sirukeerai) by RP-HPLC." J. Anal. Bioanal. Tech. 3(5): 1000147/1000141-1000147/1000144.
连结 药用植物图像数据库

本记录之永久网址: https://sys01.lib.hkbu.edu.hk/cmed/pid/detail.php?code=P00619